

Heterogeneous Laxity-based Improved Task Scheduling

for DAG-based Heterogeneous Computing

Rashmi Basavaraddi* and Arshiya Sultana**
* rashmihb123@gmail.com
** arshiyasltn@gmail.com

Abstract: In heterogeneous computing taskmapping is necessary and has drawn major attention. Task scheduling algorithms
at present are less efficient. This generally consists of two phases where first is pritorization and second is task assigning. In
this paper a Heterogeneous laxity based improved task scheduling algorithm is proposed. This method of scheduling is
represented by directed acyclic graph (DAG). This combines the method Heterogeneous Laxity Based Scheduling (HLBS)
and Heterogeneous Scheduling with Improved Task Priority (HSIP) to improve the task scheduling efficiency. Here in this
paper we come across with m-processers and n-tasks and we are concentrating on ideal time slot of any m-processers to
schedule any n-tasks with shorter laxity and execution time to complete the task. To address the performance issue we are
considering three parameters like makespan, Scheduling Length Ratio (SLR) and failure ratio.

Keywords: Directed Acyclic Graph (DAG), HLBS, HSIP, Makespan, SLR and Failure Ratio.

Introduction
The availability of a network of processors makes a cost effective utilization of underlying parallelism for application like
weather modeling, image processing, real-time and distributed database systems. A well recognized strategy in efficient
execution of a huge application on a heterogeneous computing environment is that partition it into numerous independent
tasks and plan such tasks over a set of available processors.
The task ranking algorithm divide the task into more number of tasks and an abstract replica of such a partitioned application
can be represented using the graph. Each task in the DAG corresponds to a chain of operation and the directed edge
represents the rank constraints between the tasks. Each task will be executed on a processor and in the directed edge shows
transfer of relevant data from one processor to other. Task scheduling can be performed at compile instance or at run time.
This includes execution times of tasks on unlike processors, the data size of the communication between the tasks and the
task dependencies are known apriori. The objective of task scheduling is to map the tasks on the processors and order their
execution so that task rank requirements are satisfied and a minimum overall completion time is obtained. Power
performance optimization includes minimizing the present efficiency gap in processing throughput and power utilization.
Power efficiency, a fresh focus for common purpose computing, has been a important technology driver in the application of
phone and embedded areas for few time.
Different methods are done for optimizing the solution for task scheduling difficulty. The tasks are scheduled in order to
lessen the idle time on the machines and communication overhead. The scheduling of a DAG on the topological network not
only involves the mapping of task nodes on the processor but also includes the mapping of the edges on the links of the
network. When all the inputs are accessible, that is when the parent nodes have successfully executed, only then the task is
executed. Each node has its own associated computation rate that designates the execution time of every node on the
processor. In the case of homogeneous processor, the price is the similar for every kind of processor.

Related Work
The methods on the list scheduling are used in graph to assign the ranks to tasks and for listing these tasks according to
priorities in a downward order. The task of high rank is given preference over the one having low priority by the aid of
priority policy. A task can be assigned to any of the processors meanwhile a ready list is maintained for assigning the
priorities.
Prof. Guoqi Xie et.al [1] proposed a fully heterogeneous task scheduling algorithm to address the above problems. The
fundamentals of DAG model and corresponding algorithms are investigated. New concepts called Heterogeneous Upward
Rank Value (HURV) and Heterogeneous Priority Rank Value are defined. An algorithm called Heterogeneous Select Value
is proposed in paper. Both benchmark and extensive experimental evaluation demonstrate the significant improvements in
proposed algorithm.
Mehdi Akbari et. al [2] proposed a task scheduling algorithm on heterogeneous computing systems using Efficient State
Space Search Genetic Algorithm (ESSSGA). The basic idea of this approach is to exploit the advantages of heuristic-based

Heterogeneous Laxity-based Improved Task Scheduling for DAG-based Heterogeneous Computing 289

algorithms to reduce space search and the time needed to find good solutions. The proposed algorithm uses a novel list
scheduling heuristic-based algorithm while using a heuristic-based earliest finish time approach to search for a solution for
the task-to-processor mapping. Here the results gives that makespan is better achieved.
 Guan Wang, and Yuxin Wang [3] Heterogeneous Scheduling with Improved Task Priority (HSIP). Here the algorithm has
two phases: a task prioritizing stage and it is to calculate task priorities and a processor selection stage for choosing the best
processor to execute the current task. In this task duplication selection policy is used and it will consume memory.
Yuhei Suzuki and Takuya Azumi [4] presented the HLBS Algorithm, HLBS computes the rest time until deadlines, known as
laxity, and preferentially assign a task with shorter laxity to the processor. This enables scheduling of multiple deadlines to
reduce deadline miss rate. But makespan is higher in HLBS when compared to other algorithms hence in our paper using
HLBS and HSIP Algorithm we reduced the makespan.

Methodology
In heterogeneous computing, task scheduling is major issue as different kinds of processors are used. Different kinds of
techniques though were introduced but still efficient use of resources and time complexity still remains as it is and deadlines
are missed many times. So there is need of efficient of scheduling algorithm that improves idle slot and reduces the deadline
and time complexity. The overall proposed architecture of the model is as shown in Figure 1.
The method of scheduling is represented by DAG.A DAG is a directed graph that has no cycles. It is formed by a collection
of vertices and edges, where the vertices are structure-less objects that are connected in pairs by edges. In the case of
a directed graph, every edge has an orientation, from 1 vertex to another vertex. A path in a directed graph can be describe by
a series of edges having the property that the ending vertex of every edge in the series is the same as the starting vertex of the
next edge in the sequence; a path forms a cycle if the starting vertex of its first edge equals the ending vertex of its last edge.
We identify the execution time for particular task for each m-Processor and based on the criteria such as (1) Execution time
(2) Computation Time and (3) Laxity scheduling work has taken place.
Here in this paper we are combining both the HLBS (Heterogeneous Laxity-Based Scheduling) and HSIP (Heterogeneous
Scheduling with Improved Task Priority) algorithms. There are two phases to integrate both the algorithm: I. Task
Prioritization. II. Task Assignment.
We now introduce the graph attributes used for ranking the task priorities. An application is represented by a DAG, 퐺 =
(푉,퐸), where 푉 is the set of 푛 tasks, 퐸 is the set of 푒 edges between tasks, 푤 represents the weight of task 푛 on processor
p, which is the execution cost of task 푛 , 푐 represents the communication delay from task 푛 to task 푛 ,
퐷 represents the deadline attributed to end node푛 , and 푤 and 푐̅ represent the average of the wi and cij dependent
processors, respectively.

Task Prioritization
The scheduler gives a priority level to each task as pre-processing. Tasks are given priority 	prio (T) which is recursively
defined by

푝푟푖표 (T) = 	푤 푝+ max ∈ ()(푟푎푛푘 T + 푐). (1)

A set of immediate successors to node vi is given by succ(n). prio is computed recursively by traversing the task graph
from end to entry node. The tasks are assigned a priority in ascending order ofprio . As shown in Equation 1, the HEFT
algorithm computes the priority as the sum of the execution and communication times through a path. If the task n
corresponds to an end node, prio is equal to

																																																																																										rank (T) = w p. (2)

Task Assignment
In the processor selection stage, according to the priority of task scheduling order, tasks are assigned to the lesser EFT
processor to be executed. On the basis of the above strategy, we proposed two innovative policies, entry task duplication
selection policy and idle time slots (ITS) insertion-based optimizing policy. They improve the efficiency of scheduling
algorithm.
The allocation of tasks to a processor is performed using EST (earliest execution start time) and EFT (earliest execution
finish time). EST(n , H), given by Equation 3, is an available time to start an execution of the task n on processor H and
EFT(T , H), given by Equation 4, is the time to completion of task execution.
available H is the earliest time at which processor H is ready for task execution. The set of immediate predecessor tasks
of task n is represented by	pred(n).

290 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017

Figure 1: Block Diagram of Proposed System

Figure 2: Flow Chart of task Prioritization

EFT T , H = max	(available H

max
∈ ()

(EFT(n , host T) + c))														(3)

EFT n , H = w p + EST n , H 																		(4)

Figure 5 shows the scheduling results from Figure 4 using HEFT algorithm, where the execution and communication costs
are taken from Table I. The vertical axis shows the processor, and the horizontal axis shows time. The scheduling order of the
tasks with respect to the HEFT algorithms is [T0, T4, T5, T1, T8, T11, T9, T12, T2, T6, T14, T3, T20, T15, T7, T18, T16,
T19, T13, T17, and T10]. As seen from Figure 2[a], all end nodes are concentrated near the finish time of all tasks and task
T13 fails to meet the deadline of 144. In HEFT, a deadline miss usually occurs because an end node via few nodes does not
preferentially execute.

Heterogeneous Laxity-based Improved Task Scheduling for DAG-based Heterogeneous Computing 291

The main measure of the performance of an algorithm is makespan, which is given by Formula 5:

makespan = max	(AFT H , n) (5)

The execution finish time of a task that is assigned at the end of each processor is known as the AFT (actual execution
finishes time) and is given as	AFT H , n . Representing the processor as H and the last of the tasks that are assigned to
the processor H as n makespan derives the finish time of the system.

Figure 4: Scheduling results of Figure 4 with HEFT and HLBS algorithm

Start

Calculate the Execution
Time (ET)

For Each Task

Check for the Processor
Idle Time Slot (ITS)

Assign the Task to the
Processor

Stop

For Each Processor

Choose the Processor with
Minimum Execution Time

(MET)

If
Processor is

Busy ?

If ET < ITS

Check for Other Processor
having available with next
Minimum Execution Time

Figure 3: Flow Chart of Selection of Process

292 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017

In HLBS, the priority given to task 푣 represents laxity and corresponds to the shortest time until the deadline, 푙푎푥푖푡푦(푣),
given by Equations 6 and 7.

 If 푣 corresponds to the end node:
푙푎푥푖푡푦(푣) = 퐷 −푤 푝 (6)

 If 푣 does not correspond to the end node:
laxity(v) = min ∈ ()(laxity v − c)− w p				(7)

Figure 5: DAG Input Graph

Laxity is recursively computed by traversing the task graph from end node to entry node. The tasks are assigned high priority
in ascending order of laxity. It means that the task could not afford the deadline has been preferentially assigned by the
processor. This ranking algorithm addressed Richard’s Anomalies which is a problem for fixed priority to increase makespan
when increasing the number of processors.

RESULT
In this section, we present a comparative evaluation of our algorithms and those of previous work using a randomly
generating DAG tool.

Table 1: Parameter of Each Node

Task
No.

Execution
Cost P1

Execution
Cost P2

Execution
Cost P3

Communication
Cost

T1 26 24 17 20
T2 19 12 9 2
T3 11 8 23 26
T4 16 13 6 29
T5 13 3 21 21
T6 3 4 6 23
T7 8 29 12 23
T8 4 29 19 12
T9 6 18 24 20
T10 8 2 3 6
T11 13 8 28 22
T12 2 11 24 1
T13 28 25 15 9
T14 29 1 14 2
T15 15 2 14 3
T16 15 6 10 25
T17 11 20 16 21
T18 28 22 16 10
T19 12 20 25 29
T20 4 14 24 2

Heterogeneous Laxity-based Improved Task Scheduling for DAG-based Heterogeneous Computing 293

Figure 6: Comparison of Makespan

Figure 7: Comparison of SLR

Comparison with previous work as shown in Figure 6, the average makespan value of HLBS and HLBS HSIP combined.
This difference is equivalent to one task. As the time for each of the number of tasks increased, the difference in the
makespan value become larger because tasks on the critical path are not necessarily given a high priority in HLBS, as the
main purpose is to ensure that deadline constraints are met.
Scheduling Length Ratio (SLR): SLR normalizes the scheduling length (makespan) to a lower bound. The task scheduling
algorithm that gives the lowest SLR is considered the bestperformance algorithm. SLR is defined as the ratio of makespan to
the sum of the computation time on the critical path (CP) and is calculated.

SLR = ∑ ∈ ∈ { }
 (8)

Average SLR values over several task graphs were used in our experiments.

Figure 8: Comparison of Failure Rate

294 International Conference on Signal, Image Processing Communication and Automation - ICSIPCA- 2017

Failure ratio (FR): We evaluated the performance in terms of a Failure ratio, defined as the ratio of the number of
unschedulable task sets to the total number of task sets attempted. The failure ratio was defined by

퐹푅 = 	
푡ℎ푒	푛푢푚푏푒푟	표푓	푓푎푖푙푢푟푒	푡푎푠푘	푠푒푡푠

푡ℎ푒	푛푢푚푏푒푟	표푓	푠푐ℎ푒푑푢푙푒푑	푡푎푠푘	푠푒푡푠	(100)
Where the number of failure task sets is the set of tasks including any tasks that fail to meet deadline constraints on the end
nodes.

Conclusion
In this paper we have proposed HLIS which combination of HLBS and HSIP. This approach helps us in scheduling task in
heterogeneous efficiently. This helps us in executing the task soon, with shorter scheduling length. The combination of two
approaches helps us improve in better way.

References
[1] Guoqi Xie, Renfa Li,Xiongren Xiao and Yuekun Chen, “A High-performance DAG Task Scheduling Algorithm for Heterogeneous

Networked Embedded Systems” IEEE, Vol.7, Issue 3, 2014.
[2] Mehdi Akbari and Hassan Rashidi, “An Efficient Algorithm For Compile-Time Task Scheduling Problem On Heterogeneous

Computing Systems”, Vol.7, Issue 1, 2015.
[3] Samia Ijaz, Ehsan Ullah Munir, Waqas Anwar, and Wasi Nasir, “Efficient Scheduling Strategy for Task Graphs in Heterogeneous

Computing Environment”, Vol. 10, Issue 5, 2013.
[4] Sukhjit Singh and Nirmal Kaur, “A Heterogeneous Static Hierarchical Expected Completion Time Based Scheduling Algorithm in

Multiprocessor System”, Vol. 3, Issue 2, 2016.
[5] GuanWang, YuxinWang, Hui Liu, and He Guo, “HSIP: A Novel Task Scheduling Algorithm for Heterogeneous Computing”,

Hindwai, 2016.
[6] Prerit Chawda and Partha Sarathi Chakraborty, “An Improved Min-Min Task Scheduling Algorithm for Load Balancing in Cloud

Computing”, Vol. 4, Issue 4, 2016.
[7] Anum Masood, Ehsan Ullah Munir, M. Mustafa Rafique and Samee U. Khan, “HETS: Heterogeneous Edge and Task Scheduling

Algorithm for Heterogeneous Computing Systems”, Vol.3, Issue 32, 2014.
[8] Weiwei Lin, Wentai Wu, and James Z. Wang, “A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters”,

Hindawi, 2016.

